
OpenStack Keystone Federation
Enabling Interoperability Across Clouds

Joe Savak
Senior Product Manager, Rackspace
OpenStack ATC

Marek Denis
Research Fellow,
CERN
OpenStack ATC

Brad Topol
IBM Distinguished Engineer, OpenStack
OpenStack ATC

Steve Martinelli
IBM Software Developer, OpenStack ATC
Keystone Core

A lot of individuals and companies have contributed to making Federation a core feature
provided by Keystone.

Many thanks to:

What is OpenStack & Keystone?

OpenStack:

An Open Source Cloud Operating System which allows implementors to:

-- Provision and manage compute, network, and storage resources quickly

-- Monitor and alert on those resources

-- Auto-scale cloud resources to satisfy traffic needs

-- Standardize and control disk & server images

Keystone:

The Identity service that comes bundled with OpenStack. Keystone allows implementors to:

-- Provision identities and manage their authorization

-- Integrate with an existing directory via LDAP or use a variety of other back-end options

-- Programmatically discover implemented cloud services

A bit of history:

OpenStack was jointly launched by Rackspace and NASA in July 2010 to offer cloud computing

services. Since then it has been adopted by over 20 cloud service providers, and has 124

company contributors for the latest release.

Federated Cloud Definition

OpenStack
Keystone

Amazon Web
Services IAM

Microsoft Azure

VMWare

Google Cloud

Pooling of resources from disparate,
potentially heterogenous, cloud systems
where interoperability and portability enable
sharing, migration, and redundancy which is
all ensured through a common mechanism
(such as central management system or a
common API), and where identity and
authorization management mechanisms
are established.

With Keystone, a single identity can perform
operations across multiple clouds through
established authorization mechanisms
backed by standard federation protocols.

What makes federation in Keystone special?

OpenStack services follow Service Oriented Architecture. This includes:

● Independence from any vendor or product

● A focus on interoperability over custom integrations

For the federation implementation, this results in:

● No “favorite” federation protocol

● No “favorite” identity backend

● No “favorite” service provider

● Extensible attribute mapping functionality and APIs

● Discoverability - configured identity providers & services providers, mappings, and federation

protocols can be programmatically discovered

Keystone implemented and acting as IdP for cloud

Keystone

Supported backends:
● LDAP
● SQL
● KVS

compute
service

storage
service

Typical Keystone implementation (before
federation)

Easy federation workflows for clientsClient developers would like to
be aware of as few federation
protocols as possible.

Federation Use Cases

Multiple Cloud Service

Providers

Implementor would like to

allocate workloads between

multiple cloud service providers

without having to maintain

identities in each service

provider.

Cloud Bursting

Implementor would like to auto-
scale infrastructure to service-
providers without having to
maintain identities in each
service provider.

Central policy information point for service provider trustsImplementor would like on-
premises keystone to be the
single system for handling
service provider trusts.

Easy to configure

Customers of cloud service

providers can easily integrate

their existing identity provider

with their cloud accounts.

Non-Keystone service
providers

Implementor would like to use
the keystone service-provider
federation solution to connect to
service-providers that don’t run
keystone, but do run a
supported federation protocol.

Identities federating in

Allow easy integration with
existing identity providers
through the use of federation
protocols.

Identities federating
out

Allow easy integration with
services providers through the
use of federation protocols

Icehouse Release: Federate In!
Make this work:

As an OpenStack implementor, allow me to use an identity provider I have in place today that
supports federation protocols to integrate with OpenStack clouds.

Benefits:
● Control access centrally to multiple service providers (including multiple OpenStack Clouds).
● Allow users to use one credential to have access to multiple services (single sign-on).
● Removes identity provisioning and maintenance steps required for pre-icehouse releases of

OpenStack.

Currently supporting SAML. OpenID connect in the works.

OpenStack
Cloud

Identity Provider
(i.e.: ADFS, Tivoli

Federated IdM, Ping
Federate)

1. Employer-provided
credentials

2. Appropriate access
granted

Juno Release: Federate Out!
Make this work:

As an OpenStack implementor, allow me to use my OpenStack Cloud I have in place to manage
trusts with other OpenStack clouds or non-OpenStack service providers.

Benefits:
● Clients coded against one OpenStack cloud need to know only the authentication or

federation protocol for that one cloud to access another.
● Management of authorization data centrally keeps governance
● Cuts out the need to provision identities in each integrated OpenStack cloud or service-

provider.

Currently supporting SAML.

On premises
OpenStack

Cloud A

OpenStack
Cloud B

(best cost)trust relationship

OpenStack
Cloud C

(best support)

trust relationship

2. Assertion granted
for Cloud C

1. Request access to Cloud
C

3. Assertion presented to Cloud C

4. Appropriate access granted

Keystone implemented and acting as IdP for cloud

Keystone
as IdP

Supported backends:
● LDAP
● SQL
● KVS

compute
service

storage
service

Keystone implemented, acting as IdP
for local cloud, federating out Salesforce,

AWS, Zendesk,
Etc

Keystone as
IDP compute

service

storage
service

Supported
backends:

● LDAP
● SQL
● KVS

Keystone
as SP

compute
service

storage
service

Traditional implementation Federation implementation options

Keystone implemented, federating in

ADFS, Tivoli FIM,
NetIQ access mgr,
etc

Keystone as SP
compute service

storage service

How does authorization work?

Authorization data is split between the identity provider and the service provider:

Identity Provider is responsible for :
● User → Group(s)
● Groups are sent over as part of the signed assertion to the service provider.

Service Provider is responsible for:
● After verifying the assertion, applying the mapping:

○ Group(s) that the IdP sent → Group(s) that the SP understands → Role(s)

The service provider’s endpoint service is responsible for:
● Role → Capability

IdP
John →
SysAdmin

SP Keystone
SysAdmin → ServerAdmins →
 {nova:admin, swift:observer}

Nova
nova:admin →
 {createServer, deleteServer}

Swift
swift:observer →
 {readContainer, readFile}

Kilo Release and beyond, a look forward
Attribute mapping enhancements

● Rather than listing group IDs, maybe something more dynamic, could make the deployers life
easier.

Fine grained access control

● Restrict access to specific resources (servers, networks, etc). The concept of “resource
groups” can help facilitate the grouping of resources (ex: “prod servers”, “dev environment”)
to aid in access control management.

Support additional federation protocols

● For the Service Providers, just install new apache plugins (like mod_openid, mod_auth_kerb).
● For Identity Providers, a bit more complex, would need to, for example, generate the OpenID

Connect token.
● Other folks already have working prototypes with mod_mellon, mod_abfab and

mod_auth_kerb.

Questions?

